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t Blacken labaratory, Imperial College of Science, Technology and Medicine, London SW7 
282, UK 
2 Department of Mathematics, Imperial College of Science, Technology and Medicine. 
London SW7 ZBZ, W 

Reccived 29 July 1993 

Abstract. Anderson’s chemical pseudopotential scheme is supposed lo define a set of highly 
localized basis functions in terms of which the eigenstates of a solid can be expanded exactly. 
This sounds good in principle but little is known abut the method in practice and it has not even 
been established ulal the basis functions always exist This paper diseusxs mme of the general 
properties of localized basis sell spanning a band of Bloch eigenstates and Ihen looks at the 
KmniePenney model as an example. It is shown that the chemical pseudopotential equation has 
no solutions when the strength P of the atuactive delta function potentials is less than about 
1.4018, and that the basis functions generated are never unique when they do exist FOINM~~~Y, 
it It” out that there is a generaiized version of the chemical pseudopotential equation that can 
be solved no mauer how weak the potentials, alulough the non-uniqueness of the baris functions 
remains. The solutions resemble atomic orbilals in lhe extreme tight-binding limit (although 
even then Ihere are alternatives) but this is not hue in general and so chemical pseudopotential 
theory should not be taken as ajustification for using atomic orbitals as basis functions. 

1. Introduction 

Electmnic structure methods based on localized basis functions have many advantages: the 
number of basis functions required is usually quite small; the Hamiltonian matrix is sparse; 
and the picture of chemical bonding that emerges is simple and intuitive. The simplicity is 
not surprising since chemical bonding itself is local: the Coulomb interaction is screened 
efficiently in most solids and so a C-H bond is much the same wherever it occurs and 
does not depend on the positions of distant atoms. Locality is one of the most important 
ideas in chemistry and explains the usefulness of simple concepts such as bond lengths 
and bond energies. It emerges naturally from localized basis set calculations since all the 
results come expressed in terms of quantities such as bond orders and orbital occupations 
which are themselves local [l,  21: but in calculations using extended basis functions such as 
plane waves the local nature is very hard to discem. This is reflected in the structure of the 
Hamiltonian matrix, which is sparse in a local basis and has non-zero matrix elements only 
between nearby basis functions, but which is more complicated in an extended basis. Much 
current electronic structure work is aimed at designing 6 ( N )  methods [3-5] for which the 
calculation time scales linearly with the size of the system. This objective is attainable only 
because of the local nature of chemical bonding and it seems likely that successful O(N) 
methods will use localized basis functions. 

The main disadvantage of using localized basis functions in solid state electronic 
suucture calculations is the difficulty of assessing the accuracy of the basis set. In a plane 
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wave calculation the maximum k vector can be increased until convergence is obtained 
and the adequacy of the basis set is established, but analogous tests are rarely feasible 
when using localized basis functions. This is the problem addressed by the chemical 
pseudopotential method [&I61 which shows how to define optimally localized 'perfect' 
basis functions. They are perfect because, like Wannier functions, they can be used to 
expand the eigenfunctions of the solid exactly, but they are better than Wannier functions 
because they are more localized. The remarkable thing is that since they depend only on the 
local environment they can he calculated without finding all of the extended eigenfunctions 
of the solid first. The whole set of localized basis functions (N per unit cell) needed to span 
a group of N bands in the solid can therefore be calculated in a time proportional to N .  
The construction of the Hamiltonian matrix is also U(N) and dthe resulting eigenproblem 
is of the tight-binding type for which U ( N )  methods are already known [2,6,7]. There is 
therefore. hope that the chemical pseudopotential approach could lead to a highly accurate 
(no basis set errors) U(N)  electronic structure method. which would certainly be worth 
having. 

The chemical pseudopotential basis functions are the solutions of a differential 
equation that looks rather like an atomic SchrWnger equation but is perturbed by weak 
additional potentials (the chemical pseudopotentials) due to the surrounding atoms. Unlike 
ordinary potentials, the chemical pseudopotentials depend on the basis functions themselves 
and so a form of self-consistency is required. (Note that this has nothing to do with 
the familiar requirement of self-consistency between the input and output potentials in 
Hart-Fock and density functional calculations.) The chemical pseudopotential differential 
equation is difficult to solve for real solids and nobody has ever bothered to do it properly, 
although Anderson [ 121 and Hoshino er al 113,141 have managed approximate solutions in 
particular cases. Instead, it has been argued that the chemical pseudopotentials are weak and 
hence that the basis functions must look very like atomic orbitals. This assumption underlies 
much of the work of Bullen [15], for example, but has never been properly tested. Indeed, 
it is not even clear that the chemical pseudopotential equation has localized solutions in all 
cases, never mind whether or not they look like atomic orbitals. 

In this paper we first establish some of the general properties of 'perfect' basis sets of 
localized orbitals spanning a particular band of eigenstates in a crystal. We emphasize that 
the degree of localization is in one sense fixed by the shape of the bandstructure and cannot 
be altered: different sets of perfect basis functions may look very different, but the elements 
of the D matrix (D = S ' H ,  where S and H are the overlap and Hamiltonian matrices) 
are always the same. We then describe the chemical pseudopotential method and explain 
how it chooses one of the many possible sets of localized basis functions and how it allows 
those basis functions to be calculated in a local manner. 

The rest of the paper concentrates on a particular example, the one dimensional Kronig- 
Penney model, for which most of the mathematics can be done analytically. We find that 
the standard version of the chemical pseudopotential equation is not soluble in the nearly 
free electron limit, but then show how the method may be generalized slightly to ensure that 
there are always solutions (for the Kronig-Penney model, at least). Surprizingly, it turns 
out that the solutions are never unique but always come in pairs. Both possible solutions 
are valid and both are localized, but one is more localized than the other. In the extreme 
tight-binding limit one of the two solutions tends to an atomic orbital as expected, but the 
other becomes a linear combination of atomic orbitals. Away from the tight binding limit 
neither of the solutions looks very much like an atomic orbital and so one must be very 
wary of general arguments invoking chemical pseudopotential theory to justify the use of 
atomic orbitals as basis functions. 

W M C Foulkes and D M Edwards 
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2. General properties of perfect localized basis sets 

Imagine a crystal consisting of M (> 1) unit cells altogether and subject to periodic 
boundary conditions. The M real space lattice vectors will be denoted by R and the 
reciprocal lattice vectors by G. The first Brillouin zone contains M IC points consistent 
with the overall periodic boundary conditions. We wish to look at the properties of a set 
of localized basis functions, @R(T). spanning a particular band of eigenstates, @ k ( ~ ) .  One 
basis function is to be centred in each unit cell and all the basis functions must be identical 
to within a lattice translation. There are M eigenstates in the band (one per allowed value 
of k in the first Brillouin zone) and we seek M localized basis functions (one for each R). 

For simplicity, we will assume throughout this paper that the band in which we are 
interested is isolated and does not overlap any other bands. This is unlikely in a real solid, 
but the generalization of the theory to the case when L basis functions per unit cell span a 
group of L overlapping bands is fairly straightforward. 

Any one of the M Bloch eigenvectors can be expanded in terms of the basis functions 
and symmetry tells us that the expansion coefficients must be just the usual Bloch phase 
factors, 

C(k) is a normalization constant, which is not necessarily equal to unity since the basis 
functions need neither be normalized nor mutually orthogonal. Inverting the Fourier 
transform in equation (1) we find that 

If we choose C(k)  = 1 then the localized basis functions are orthonormal and are simply 
the familiar Wannier functions [17,18]. 

Since the set of basis functions spans a band of eigenstates it must be closed under the 
action of the crystal Hamiltonian, H, and we can write 

where DRR is independent of R and DR,.R depends only on R' - R in a perfect crystal. 
(We are working in an independent electron formalism and so fi is a Hartree-Fock or 
density functional Hamiltonian. Perhaps it is the Hamiltonian during one iteration of a 
self-consistent calculation, or perhaps it is the input Hamiltonian in a non-self-consistent 
Harris functional calculation [20,21].) Taking matrix elements shows that the D matrix is 
related to the Hamiltonian and overlap matrices, H and S, via 

It is the D matrix, rather than the more familiar H and S matrices, that takes the central 
place in chemical pseudopotential theory. 

In this simple translationally invariant example, the D matrix elements are directly 
related to the bandstructure ~(k). If equations ( I )  and(3) are substituted into the Schriidinger 
equation 

(5) fi1'tk-k) = @ + fi) l@k) =E(k)l@k) 
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one obtains 

6 x e x p ( i k .  R)I@R) = C e x p ( i k  R)DR'.RI$R) = x e x p ( i k .  R)I@R) (6) 
R R.R R' 

and the linear independence of the basis functions then implies that 

~ ( k )  = Cexp(- ik .~)DR, .Rerp( ik .R)  = C ~ O . R e x p ( i k . ~ )  = C ~ R , o e x p ( - i k . ~ )  

(7) 

W M C Foulkes and D M Edwards 

R R R 

where the last two steps made use of the translational invariance and inversion symmetry 
of the Bravais lattice. ~ ( k )  is a periodic function in k space and so has Fourier components 
corresponding to each real space lattice vector. These Fourier components are simply the D 
matrix elements which are therefore completely determined by the bandstructure and are the 
same no matter which of the infinitely many possible sets of localized basis functions we 
choose. The H and S matrices clearly depend on the details of the basis functions (whether 
we use orthonormal Wannier functions or non-orthonormal chemical pseudopotential basis 
functions, for example), but D = S ' H  is always the same as long as all the basis functions 
are identical to within a lattice translation and there is one basis function per unit cell. 
Anderson [lo] realized this, but he also pointed out that non-orthonormal bases can consist 
of more localized functions than orthonormal ones. This is  undoubtedly true, but the 
invariance of the D matrix makes the usefulness of the extra localization debatable. Inverting 
equation (7) we obtain 

which reinforces the point that the D matrix is determined by the bandstructure and does 
not depend on the details of the basis set. 

The basis functions are linear combinations of the eigenfunctions and so the Fourier 
components of the two sets of functions are related simply. $R may have non-zero Fourier 
components at any wavevector consistent with the overall periodic boundary conditions 

where the sum over k covers all M k points in the first Brillouin zone and the sum over 
G extends over all the reciprocal lattice vectors. The normalized Bloch eigenfunctions $k 

have Fourier expansions of the form 

Note that the Fourier components of $~fi are non-zero only at wavevectors differing from IC 
by reciprocal lattice vectors and so cover a much coarser grid in reciprocal space than do 
the Fourier components of +R. The relation between the two Fourier expansions is obtained 
by substituting both into equation (2) and the result is 
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The Fourier components of the eigenfunctions satisfy the Schrijdinger equation in 
reciprocal space 

1 
-Ik + GI2&(k + G)  + 2 

where 

(12) V(G')$k(k + G - G') = &(k)&(k + G)  
G' 

V(r) = p(G)exp(iG. P). (13) 

Equation (12) fixes the relative magnitudes of the Fourier components of the eigenfunctions 
at all points on the coarse reciprocal space mesh of points k + G with k fixed and G any 
reciprocal lattice vector, but equation ( I  1) shows that at all points on this grid, & is simply 
a constant multiple of & (the multiplier depends on k but not on G and so really is the 
same at all the grid points). Hence the Fourier components of +R satisfy exactly the same 
reciprocal space Schrodinger equation as the Fourier components of the eigenfunctions 

G 

(14) 
I 
-Ik + Gl*&~(lz + 0 + c v(G')JR(k + G - G') = &(k)&(k + G).  2 

We are free to pick the Fourier components of at all of the M k points within the first 
Brillouin zone (this freedom corresponds to the choice of the C ( k )  function in equation (2)). 
but once this has been done the Fourier components throughout the rest of reciprocal space 
are determined by equation (14). Some sets of first-Brillouin-zone Fourier components will 
lead to localized basis functions and some will not, and the task facing us now is to decide 
on a useful and convenient choice. A direct attack on the problem is difficult, but the 
chemical pseudopotential method suggests an elegant indirect approach. 

G' 

3. The chemical pseudopotential method 

The above discussion applies to any set of basis functions spanning a band of eigenstates 
as long as all the basis functions look the same and there is one per unit cell. Now we want 
to concentrate on one particular set, the set of non-orthonormal chemical pseudopotential 
basis functions. To see how these are defined, let us go back and look at the closure relation 
(equation (3)) 

This equation holds for any set of functions spanning the band and so we need to do more 
to specify the basis functions uniquely. There are several (related) ways forward, which are 
well summarized by Weeks et al [I I], but Anderson's is probably the simplest. He defines 
the basis set by imposing an additional 'self-consistency' condition, 

DR.R = (@RR'ICRR'I@RR) (R # R') (16) 

where it has been assumed that the crystal potential V(r)  can be written as a sum of 
contributions from each unit cell 
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Substituting the selfconsistency condition into equation (IS), one obtains 

W M C Foulks and D M Edwards 

which is known as the chemical pseudopotential equation. Note that any potential can be 
decomposed into contributions from individual cells and so equation (18) can be exact In 
practice, however, it is usually assumed that the cell potentials have some simple form (a 
screened atomic potential, for example, if there is just one atom per unit cell) and so an 
approximation is made at this stage. 

Near lattice point R, the Hamiltonian in equation (18) looks rather like an atoqic 
Hamiltonian (assuming, for simplicity, that there is just one atom per unit cell and that VR 
is close to an atomic potential), but on other sites only weak ‘chemical pseudopotentials’ 
act 

The removal of the projection along I&) weakens the effective potential and so it is 
reasonable to hope that the chemical pseudopotential equation has localized atomic like 
solutions. These could be found by starting with a good guess (atomic orbitals, for example); 
constructing the corresponding chemical pseudopotentials; solving equation (1 8) once to find 
the output basis functions; using these to construct the new chemical pseudopotentials; and 
iterating until self-consistency is attained and the input and output basis functions are the 
m e .  During these iterations the D matrix elements will settle down to their proper values 
and the bandstructure of the crystal can then be deduced from equation (7). or by solving 
either of the two equivalent secular equations 

det(D - cl) = 0 det(H - ES) = 0 (20) 

in a non-crystalline solid. 
Anderson [ I21 carried through an approximate version of this pmedure for the )r bands 

on a chain of carbon atoms and found that the cancellation of the potentials on other sites 
was effective and that the basis functions were. therefore very close to atomic eigenfunctions. 
Hoshino et al [ 13,141 found approximate solutions for and for some small molecules 
containing only C atoms. In no other cases has the chemical pseudopotential equation been 
solved, however, and it has never been solved accurately. Indeed, it is not even clear that 
localized solutions always exist, although the assumption that they do and that they look 
like atomic orbitals has been behind many electronic structure calculations [15]. All this 
deserves to be investigated more thoroughly, which is the purpose of this paper. 

There is one more point to be discussed before going on. Equation (18) is non-linear and 
so the normalizations of the states used in constructing the chemical pseudopotentials must 
be specified. This is easiest to understand by thinking about the iterative method of solution 
described above. The initial chemical pseudopotentials are constructed and then held fixed 
while equation (18) is solved to find the output basis functions. Because the chemical 
pseudopotentials are fixed during the iteration, the differential equation becomes linear and 
the normalizations of the output basis functions are arbitrary. However, the normalizations 
do matter when we come to construct the input chemical pseudopotentials for the next 
iteration. since the bigger the normalization the greater the amount of V R ~  ‘subtracted off.’ 
It is usually assumed that it is best to use basis functions of unit normalization, but it 
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tums out that this is not necessarily true for the Kronig-Penney model since the chemical 
pseudopotential equation may not have solutions unless larger normalizations are allowed. 

There is another way of viewing the freedom to choose the normalization: solving 
the chemical pseudopotential equation with (&I&) = WR, is equivalent to solving the 
alternative equation 

with I ~ R , )  normalized to unity. The factor W R ~  (independent of R‘ in a perfect crystal), 
which was introduced as a normalization constant, may therefore also be viewed as a scale 
factor in the pseudopotential. We will take the second point of view from now on, allowing a 
scale factor in the pseudoptotential but insisting that all the basis functions are normalized (a 
procedure first suggested by Hashino et al [ I  31). The Anderson self-consistency condition, 
equation (16). becomes 

but little else changes. 

4. Application to the KroniePenney model 

The one-dimensional Kronig-Penney model is so simple that the chemical pseudopotential 
equation can be solved almost entirely anaIytically. This allows us to ascertain when 
solutions exist and when they do not, and to examine the basis functions all the way from 
the tight-binding to the nearly free electron limits. The results, shown in the figures, are 
quite surprising. 

The Schrodinger equation for the one-dimensional Kronig-Penney model is 

Lengths are measured in units of the lattice parameter and there are attractive delta functions 
of strength P at each lattice point. The magnitudes of the reciprocal lattice vectors are all 
integer multiples of 2n. 

We are looking for a set of localized basis functions, one centred in each unit cell 
and all identical to within lattice translations, exactly spanning the lowest band of the 
Kronig-Penney model. Since the basis functions are. all equivalent we will consider only 
& (the basis function centred at the origin) from now on. All perfect sets of localized basis 
functions have Fourier components that satisfy the Schrodinger equation in reciprocal space 
(see equation (14) and the preceding discussion) and hence 

1 
-(k + G)’&(k + G )  + C v(G‘)&(k + G - C’) = &(k)&(k + G). 2 (24) 

The Kronig-Penney bandstructure is easy to calculate [I71 and so we can assume that ~ ( k )  
is known. The delta function form of the potential implies that 

C’ 

I/(G’)&(k + G - G’) = V ( x ) & ( x )  exp[-i(k t G)x]dr = -P exp(-ikm)@&n) 

(25) 
01 G’ J 
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and hence equation (24) becomes 

W M C Foulkes and D M Edwards 

So far all this applies for any set of perfect localized basis functions. The chemical 
pseudopotential basis functions also satisfy the Anderson self-consistency condition (in our 
slightly generalized form) 

Dmo = ( + m l w ~ m l h )  = -Pw+;,(m)ho(m) = -Pw+,XWo(m) 

where the D matrix elements are related to the bandstructure via 

(m # 0) (27) 

and so are also known. Substituting equation (27) into equation (26) now gives 

fwlh(O)[* - ~ ( k )  + Dw 
f(k + - E @ )  

The only unknown on the right hand side of this equation is &(O), which is fixed by the 
condition that h ( x )  must be normalized. 

To apply the normalization condition, we start by writing down an explicit expression 
for & ( x )  

Now we set the integral of I+0(x)l2 over the whole system equal to unity to obtain 

i(k + G)’ - E ( k )  

which is a quadratic equation of the form 

aq2 +hq + c = 0 (32) 

for q = 1&,(0)1*. In practice a, b, and c are evaluated numerically using the known 
bandstructure and value of Dw; equation (32) then gives 14(0)12; and equation (30) 
determines +o(x).  It should be noted that in the limit M -+ 00, the sum over k in the 
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Brillouin zone and over reciprocal lattice vectors G may be replaced by a single integral 
over all k, ~ ( k )  being considered as a periodic function in reciprocal space. 

The parameters Q and c are explicitly positive and so the two roots of equation (32). 
if real, have the same sign. Since negative roots are unacceptable there will either be 
two acceptable solutions or no acceptable solutions, a unique solution existing only when 
b2 = 4ac. In the limit as w + 0, when the w2 tenn in b can be ignored, we can use 
the Schwarz inequality 1221 to pmve that b2 - 4ac < 0 and so there are no real solutions. 
In the limit as w -+ 00, b is < 0 and b2 >> 4oc and so there are two real positive 
solutions, both of which are acceptable. As w increases from zero we therefore switch from 
a region where there are no solutions to a region where there are two solutions, without 
the intervention of a finite region in which there is a unique solution. The lack of solutions 
as w -+ 0 makes good physical sense since the cancellation of the potential on other sites 
becomes ineffective in that limit and the chemical pseudopotential equation tuns back into 
the original Schrijdinger equation, but the fact that the solutions always come in pairs is 
surprising. This particular form of non-uniqueness may be specific to the Kronig-Penney 
model, of course, and there may be unique solutions for other models; but we have shown 
that multiple solutions are possible and see no reason why they should not occur in other 

The complication of multiple solutions may be avoided if we specify the (real) value 
of h ( 0 )  instead of insisting that the basis functions are normalized. Then equation (30) 
allows us to construct a unique solution for any positive value of w.  For small values of w 
(when we know there are no normalized solutions) the basis functions generated will have 
very large norms and so correspond to normalized solutions for a much larger value of w ,  
but solutions can always be found and are always unique. We will stay with normalized 
basis functions, however. since that is what most users of chemical pseudopotentials do and 
we want to investigate the method as it is used rather than a close relative. 

Before going on to look at the results, there is one point that confused us and needs 
clearing up. Setting x = 0 in equation (30) gives 

cases. 

which looks like a sort of self-consistency relation fixing the value of 1#0(0)1~ once and for 
all. In fact, it can be shown that both sides of this equation are equal to zero independent 
of the value of 1#0(0)1~ and so 1h(0)12 escapes undefined. 

5. Results 

In the extreme tight-binding limit the Kronig-Penney bandstructure is almost flat and 
accurate wavefunctions can be obtained by taking linear combinations of atomic orbitals. 
We would therefore expect the chemical pseudopotential method to work well. With this in 
mind we will start by considering the case when P = 5.  The overlap s of atomic orbitals 

on adjacent sites is then just 0.04. 
The P = 5 Kronig-Penney bandstructure is compaed to the free electron bandstructure 

in figure l(a) and the closeness to the tight-binding limit is obvious. As was explained in 
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section 4, there is always a minimum value of w (called wmh from now on) below which 
the chemical pseudopotential equation cannot be solved. wmi,, decreases very rapidly as 
P increases and numerical experiments show that it lies somewhere between 0.015 and 
0.020 when P = 5. This means that subtracting just one part in fifiy of the projected 
potential on other sites is enough to localize the basis functions, which seems remarkable. 
The two solutions of the chemical pseudopotential equation are identical at wmh (6’ = 4ac 
in equation (32)) but soon begin to differ as w is increased. At w = 0.02, just above the 
minimum, they are as shown in figure l(6) and are quite well localized. As w increases, the 
two solutions become more and more different (fFigure I(cHe)), until in the very-large-w 
limit they are as shown in figure IV). One of the two solutions is the expected atomic 
function and has appreciable weight only on the atom at the origin, but the other is mostly 
on the two atoms either side of the origin and has almost zero weight on the central atom. 
One might expect that the most atomic-like solutions will occur when w = 1, since then the 
chemical pseudopotentials are substantially weakened by the subtraction of the projection 
along the basis function but the ‘overshoot’ that can happen at larger values of w is avoided. 
This expectation is supported by the results, although w = 0.5 (not shown) and w -P 00 

will do almost as well. 
We have tested both solutions by checking that the appropriate Bloch linear combinations 

of the basis functions (cf. equation (I ) )  really do give the known eigenfunctions of the 
Kronig-Penney model. The tests were successful and so we are confident that the non- 
uniqueness is genuine. Note that both solutions correspond to exactly the same D matrix 
and so to the same (lowest) eigenvalue of the chemical pseudopotential equation-neither 
is an ‘excited state.’ 

If we now decrease P (so increasing s), the value of wmin increases and reaches unity 
when P N 1.4018 (s N 0.591). For P values smaller than 1.4018, the usual version of 
the chemical pseudopotential equation (normalized basis functions with w = I )  cannot be 
solved, although solutions can still be obtained if larger values of w are allowed. As an 
example, let us now move on to the case when P = 1 and s = 0.74. The bandstructure, 
shown in figure 2(a), is somewhere between the tight-binding and nearly free electron limits. 
w,in lies between 1.770 and 1.775 and the basis functions for a selection of w values are 
shown in figure 2(6>-2(f). The best localized solution is found near w = 5 (the argument 
that one would expect the best localized solutions when w = 1 only works in the tight- 
binding limit-here the chemical pseudopotential equation cannot even be solved when 
w = I )  and is considerably more localized than an atomic orbital. Similar extra localization 
has been observed by Hoshino et al [I31 in very different circumstances. Unfortunately, 
the short range of the basis functions does not imply a correspondingly short ranged D 
matrix, since the large value of w makes the off diagonal D matrix elements very sensitive 
to the small tails of the basis functions. This is an example of a point we have already 
discussed-that the degree of localization of the basis functions is irrelevant because the D 
matrix is fixed by the bandstructure. 

For very small values of P, w,i,, becomes proportional to I/P and increases rapidly. 
A bandstructure for P = 0. I ,  s = 0.995, is shown in figure 3(a) and is very close to a free 
electron bandstructure. The value of w,h is now between 27.990 and 27.995 and the two 
chemical pseudopotential basis functions for w = 27.995 are shown in figure 3(6) (this is 
so close to wmin that the two solutions are indistinguishable). They are very long ranged, 
extending over at least 20 atoms, but are still much more localized than atomic orbitals. 
One of the two basis functions shrinks noticeably as w grows, becoming optimally localized 
near w = 40, but then becomes less localized again as w carries on increasing. 
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6. Conclusions 

Chemical pseudopotential theory has been around for a long time and is elegant and 
plausible. However, it was invented in the days when computing was difficult and was 
not tested properly as a result. An approximate version of chemical pseudopotentials has 
already been widely and successfully used by Bullett [15], but there is evidence [23] that 
the approximations involved do not work well for solid H, and some recent work by one 
of us [NI shows that they also fail for Ge. It is reasonable to hope that a less approximate 
implementation may become the basis of a quick and accurate U(N) bandstructure method, 
but this is not yet clear and will not become clear until we know more about chemical 
pseudopotentials in general. Does the chemical pseudopotential equation have solutions in 
real solids? Are those solutions unique if they do exist? How closely do the chemical 
pseudopotential basis functions resemble atomic orbitals? What is the best value of w? 
Is the numerical task of solving the chemical pseudopotential equation in a real solid so 
forbidding as to rule out the method in practice? All these questions will need answers if 
chemical pseudopotentials are ever to become an accurate bandstructure method and this 
paper represents a first attempt to address some of them. 

In section 2 we discussed ‘perfect’ localized basis sets in general. We clarified the 
limited freedom available in chwsing the basis functions and remarked on the fact that the 
D matrix is fixed by the bandstructure so that to some extent the degree of localization of the 
basis functions is irrelevant. Then we introduced the chemical pseudopotential method and 
explained how it can be solved almost analytically for the one-dimensional Kronig-Penney 
model. For this example, we showed that the usual version of the chemical pseudopotential 
equation, in which the basis functions are normalized to unity. has solutions only in the 
tight-binding limit. However, introducing the parameter w ,  which may be regarded as either 
an arbitrary basis function normalization or as a multiplying factor in the pseudopotential, 
allows solutions to be found in all cases. The main surprise was that the solutions are never 
unique, but always come in pairs. It is possible that this non-uniqueness is specific to the 
Kronig-Penney model and does not occur in real solids, but we are far from convinced that 
this is the case. In the nearly free electron limit we found that the chemical pseudopotential 
basis functions were much more localized than atomic orbitals even though the D matrix 
becomes rather long ranged (the matrix elements would decay as r W z  for free electrons). 
This makes clear the error in confusing the range of the D matrix (which is fixed by the 
bandstructure) with the range of the basis functions (which is not). 

Fortunately, our results certainly do not rule out the idea of basing an accurate 
bandstructure method on chemical pseudopotential theory. It seems likely that reasonably 
localized basis functions do exist in most solids and that they can be calculated by solving the 
local chemical pseudopotential equation. The probable lack of uniqueness in the solutions 
may be an annoyance but is unlikely to be anything worse than that, and so the possibility 
remains that chemical pseudopotentials may lead to a local bandstructure method with no 
basis set errors. 
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